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Abstract — Rayleigh [14] derived the Rayleigh distribution 
from the amplitude of sound resulting from many important 
sources. The Rayleigh distribution is related to have a wide 
range of applications in diverse areas of human endeavors 
comprising life testing experiments, reliability analysis, 
applied statistics and clinical studies. This distribution is a 
special case of the two parameter Weibull distribution when 
the shape parameter take the value 2.In this paper we 
propose Generalized Weibull-Rayleigh distribution using the 
generalized family proposed by [11]. Some properties of the 
new distribution such as moments and moment generating 
function were studied. The estimation of the distribution 
parameters was conducted using the method of maximum 
likelihood. We also compared the proposed distribution to 
some other generalizations of Rayleigh distribution using 
some lifetime data sets. 

Keywords--Rayleigh distribution, moments, moment generating 
function, maximum likelihood. 

I. INTRODUCTION 

Rayleigh [14] derived the Rayleigh distribution from the 
amplitude of sound resulting from many important sources. 
The Rayleigh distribution has a wide range of applications 
including life testing experiments, reliability analysis, 
applied statistics and clinical studies. This distribution is a 
special case of the two parameter Weibull distribution 
when the shape parameter takes a value 2. A random 
variable X is said to have a Rayleigh distribution with 
parameter θ if its probability density function (pdf) is given 
by: 
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And the corresponding cumulative distribution function 
(cdf) is given as 
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for 0,0  x whereӨ is the scale parameter. 

We have so many generalized families of distributions 
proposed by different researchers which have been used by 
others to extend so many standard or classical distributions 
to produce compound distributions found to be better than 
the classical ones. Some generalizations of the Rayleigh 
distribution have led to the development of other 
compound distributions such as the generalized Rayleigh 
distribution by [8], Bivariate generalized Rayleigh 
distribution by [1], Transmuted Rayleigh distribution by 
[9] and the Transmuted Inverse Rayleigh distribution by 
[3]. In a similar manner, for any continuous distribution 

with cdf G(x), and pdf )(xg , [11] defined the generalized 

Weibull family of distributions (GW-G) with two extra 
parameters α > 0 and β > 0 to have itspdf f(x) and cdf 
F(x)respectively given by: 
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where �(�) and �(�) are the pdf and the cdf of any 
continuous distribution respectively while 

)(1)(' xGxG   and α > 0 and β > 0  are the scale and 

shape parameters respectively.
 The aim of this paper is to introduce a new continuous 

distribution called the Generalized Weibull-Rayleigh 
distribution (GWRD) from the proposed family by [11]. 

II. MATERIALS AND METHODS 

The GWRD 
By taking the pdf (1) and cdf (2) of the Rayleigh 
distribution. The cdf and pdf of the GWRD are obtained 
from equation (3) and (4) as 
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The pdf and cdf of the GWRD at chosen parameter values 
are displayed in Figures 1 and 2. 

III. ANALYSIS 

In this section, we defined and discuss some properties of 
the GWRD distribution. 

A. The Moments 

Let X denote a continuous random variable, the nth moment 
of X is given by; 
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wheref(x) the pdf of the Generalized Weibull-Rayleigh 
distribution is as given in equation (6). 

Hence, 
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The Mean 

The mean of the GWRD can be obtained from the nth 

moment of the distribution when n=1 as follows:  
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Also the second moment of the GWRD is obtained from 

the nth moment of the distribution when n=2 as 
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The Variance 
The nth central moment or moment about the mean of X, 
say ��, can be obtained as 
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The variance of X for GWRD is obtained from the central 
moment when n=2, that is, 
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The variation, skewness and kurtosis measures can also be 
calculated from the non-central moments using some well-
known relationships. 

B. Moment generating function 
This is another simple way writing all the moments in one 
mathematical function. In other words, the mgfgenerates 
the moments of X by differentiation i.e., for any real 
number say k, the kth derivative of ��(�) evaluated at 

� = 0 is the kth moment ��
′  of X. 

The mgf of a random variable X can be obtained by 
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C. Estimation of Parameters 
 

Let 1 , , nX X  be a sample of size ncontaining 

independently and identically distributed random variables 
drawn from the GWRD with unknown parameters α, β, and 
θ. The pdf of the GWRD is then given as: 
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The likelihood function is given as; 
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Taking the partial derivative of the log likelihood 
function,�(�) with respect to α, β and θ respectively, we 
get the MLEs as follows; 
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Solving the equations of 0,
dl
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for each parameter shall provide the maximum likelihood 

estimates (MLEs) of parameters  , and . However, 

these solutions cannot be obtained analytically except 
numerically with the help of some statistical 
software/packages. 

IV. RESULTS 

In this section, we have considered the adequacy of the 
GWRD compared to those of three generalizations of the 
Rayleigh model including the Weibull-Rayleigh 
distribution (WRD), the Transmuted Rayleigh distribution 

(TRD) and the Rayleigh distribution (RD) and three real 
life data sets for fitting the above selected models with 
their descriptive statistics.  
Data set I: This data set represents the strength of 1.5cm 
glass fibers initially collected by members of staff at the 
UK national laboratory. It has been used by [1], [4], [5], 
[13] as well as [16].  
Data set II: This data set represents the lifetime’s data 
relating to relief times (in minutes) of 20 patients receiving 
an analgesic and reported by [6] and has been used by [15].  
Data set III: The second data set represents 66 
observations of the breaking stress of carbon fibres of 
50mm length (in GPa) given by [12].  
We also provide some histograms and densities for the 
three data sets as shown in Figures 5, 6 and 7below 
respectively. 

A. Figures and Tables 
 

 
Figure 1: The graph of pdf of the GWRD using different 

parameter values where , 6.5.a b for    
 

 
Figure 2: The graph of cdf of the GWRD at different 

parameter values where , 6.5.a b for      

 
Figure 3: A histogram and density plot for the strength of 

1.5cm glass fibres (Data set I) 

 
Figure 4: A Histogram and density plot for the Relief 

times of 20 patients (Data set II) 

 
Figure 5: A Histogram and density plot for the Breaking 

stress of carbon fibres (Data set III) 
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Table 1: Performance of the selected models using the 
AIC, CAIC, BIC and HQIC values of the models evaluated 
at the MLEs based on data set I. 
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Table 2: Performance of the distribution using the AIC, 
CAIC, BIC and HQIC values of the models based on data 
set II. 
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Table 3: Performance of the distribution using the AIC, 
CAIC, BIC and HQIC values of the models based on data 
set III. 
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V. DISCUSION 

The plot for the pdf shows that the GWRD is positively 
skewed and hence good model for modeling rightly-
skewed data sets. From the histograms and densities shown 
above in Figures 5, 6 and 7 for the three data sets 
respectively, we observed that the first data set is 
negatively skewed, the second data set is positively skewed 
while the third data is approximately normal and therefore 
suitable for distributions that are skewed to the left, right 
and symmetry respectively.  

Besides the models listed above, these three data sets 
could also be analyzed using a distribution which has 
various shapes depending on the values of the parameters 
and which the generalized Weibull-Rayleigh distribution is 
a special case. In Table 1, the values of the parameter 
MLEs and the corresponding values of -ƖƖ, AIC, BIC, CAIC 
and HQIC for each model show that the GWRD has better 
performance compared to the WRD, TRD and RD. This 
also agrees with the fact that generalizing any continuous 
distribution provides a distribution with a better fit than the 
classical distribution.  

Table 2 also shows the parameter estimates to each 
one of the four fitted distributions for the second data set 
(data set II), the table also provide the values of -ƖƖ, AIC, 
BIC, CAIC and HQIC of the fitted models. The values in 
Table 2 indicate that the TRD has better performance with 
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the lowest values of AIC, CAIC, BIC and HQIC followed 
by the GWRD, WRD and RD. The secret behind this 
performance is that, the second data set has a higher degree 
of skewness and kurtosis meanwhile, our proposed model 
has various shapes with a moderate peak and skewness.  

Similarly, Table 3 presentsthe parameter estimates 
and the values of -ƖƖ, AIC, BIC, CAIC and HQIC for the 
four fitted models. The values in the above table also 
provide evidence that the GWRD has better performance 
with the lowest values of AIC, CAIC, BIC and HQIC 
compared to the other three models. This also implies that 
the GWRD could be used to model all kinds of data sets 
since the above data set is approximately normal. It also 
shows that the GWRD has various shapes as earlier stated 
and proven by its graph of pdf and other properties. 

VI. CONCLUSION 

In this paper, a new distribution has been proposed. Some 
mathematical and statistical properties of the proposed 
distribution have been studied appropriately. The 
derivations of some expressions for its moments and 
moment generating function, have been done 
appropriately. Some plots of the distribution revealed that 
it can take any shape depending on values of the 
parameters.  
 The model parameters have been estimated using the 
method of maximum likelihood estimation. The results of 
the three applications showed that the proposed 
distribution (Generalized Weibull-Rayleigh distribution) 
performs better than the Weibull-Rayleigh, transmuted 
Rayleigh and the Rayleigh distributions irrespective of the 
nature of the data sets. This implies that the proposed 
distribution can be used when we have skewed and 
symmetric datasets. 
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